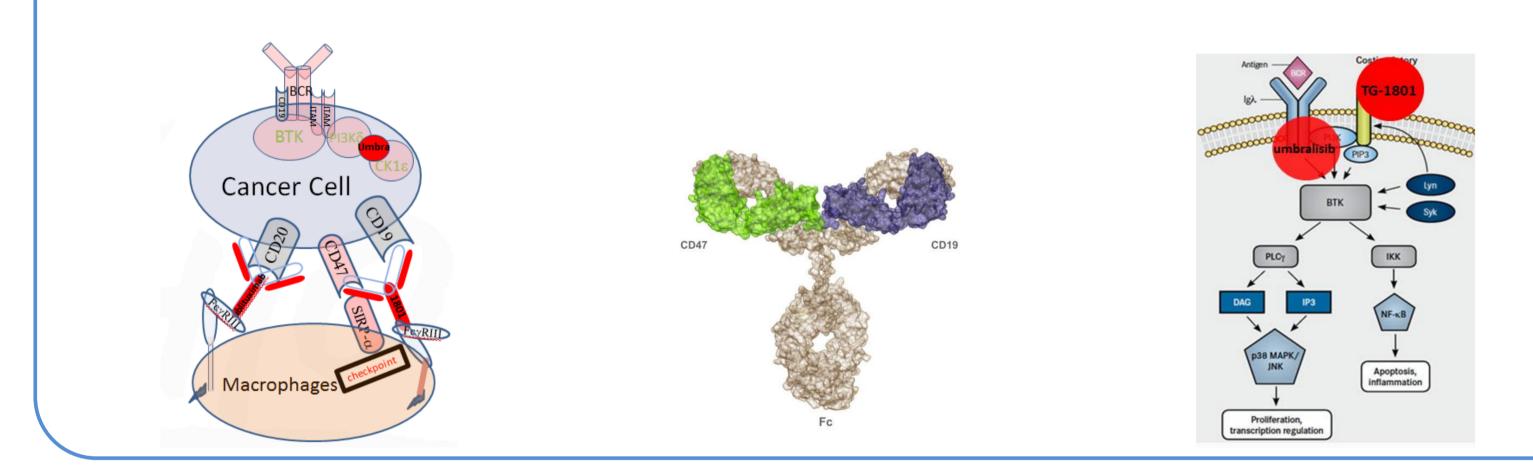


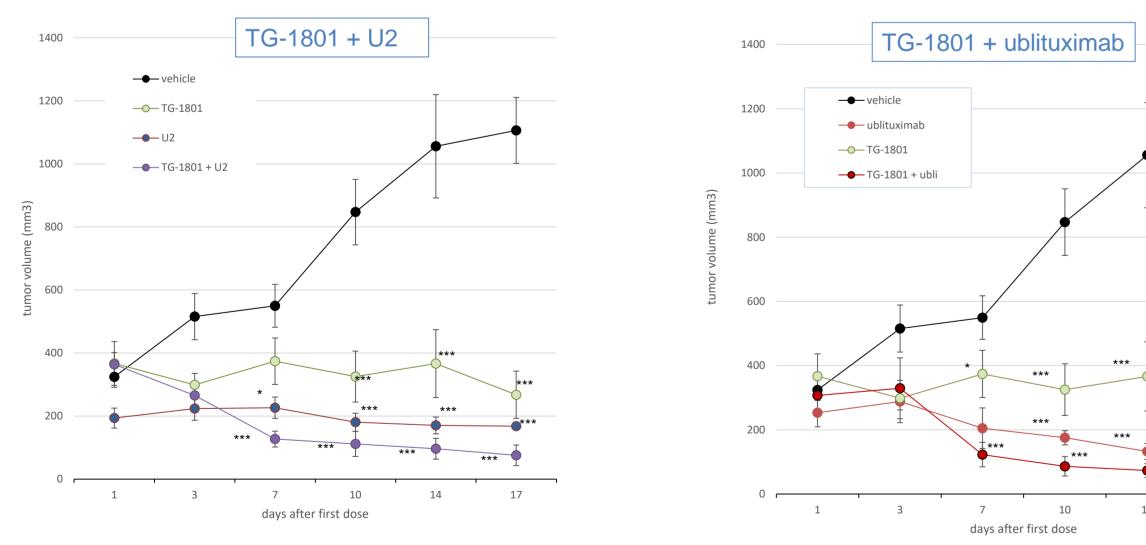
<u>Marcelo L Ribeiro¹, Emmanuel Normant², Diana Reyes Garau¹, Hari P. Miskin², Peter Sportelli², Michael S. Weiss², Francesc Bosch¹ and Gael Roué¹</u>

¹Department of Hematology, University Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO), Autonomous University of Barcelona, Barcelona, Spain; ² TG Therapeutics, New York, NY, USA.


BACKGROUND:

Deregulated BCR signaling is considered to be a key contributor to tumor growth and survival in B-cell non-Hodgkin lymphoma (B-NHL). Targeting this pathway led to the development of inhibitors of Bruton's tyrosine kinase (BTK) and phosphatidylinositol 3 kinase (PI3K), which are validated therapeutic strategies in B-NHL.^{1,2}

Recently, it has been reported that targeting CD47, a dominant "don't eat me" signal for macrophages, represents a novel therapeutic strategy for enhancing antitumor responses mediated by the innate immune system.³


Herein we studied the effects of TG-1801, a novel CD47-CD19 bispecific antibody, in-vitro and in-vivo, on the antitumor activity of ublituximab, umbralisib, and the combination of both ("U2")

- **Ublituximab** : Next-generation glycoengineered anti-CD20 monoclonal antibody, in Phase 3 pivotal trials.⁴ Umbralisib: PI3Kδ and CK1ε dual inhibitor which has demonstrated activity in preclinical models and primary B-NHL cells, and in patients with B-cell malignancies. The doublet of umbralisib and ublituximab (called the "U2" regimen), provides a non-chemotherapy backbone regimen on which novel multidrug combinations have been explored.⁵
- **TG-1801** : CD47-CD19 bispecific antibody, currently in Phase 1, that selectively targets CD47 on CD19+ B-cells, sparing red blood cells and platelets, and blocking the CD47-SIRP α macrophage checkpoint on mature B cells.

AIM: To evaluate the synergistic anti-tumor activity of the novel bispecific CD47-CD19 antibody TG-1801 in combination with the anti-CD20 mAb ublituximab and the PI3K δ -CK1 ε dual inhibitor umbralisib in *in* vivo and in vitro models of B-NHL

TG-1801 cooperates with ublituximab (right panel) and with the ublituximab + umbralisib combination (U2, left panel) to reduce tumor growth in a subcutaneous mouse model of Burkitt lymphoma. NSG mice were subcutaneously injected with Raji cells and tumor-bearing mice were randomly assigned to one of the following treatment arms (8-6 mice per group): Ublituximab (5mg/kg, qw), Umbralisib (150mg/kg, bid), TG-1801 (5mg/kg, qw), the combinations of U2, TG-1801 + Ublituximab or the triple combo (U2 + TG-1801) for 17 days.

- When administrated alone, ublituximab, ublituximab + umbralisib (U2) and TG-1801 displayed a tumor growth inhibition (TGI) of 88%, 85% and 76%, respectively.
- The combinations of TG-1801 with ublituximab and U2 achieved TGI of 93% and 93% respectively.

The novel bispecific CD47-CD19 antibody TG-1801 potentiates the activity of Ublituximab-Umbralisib (U2) drug combination in preclinical models of B-cell non-Hodgkin lymphoma

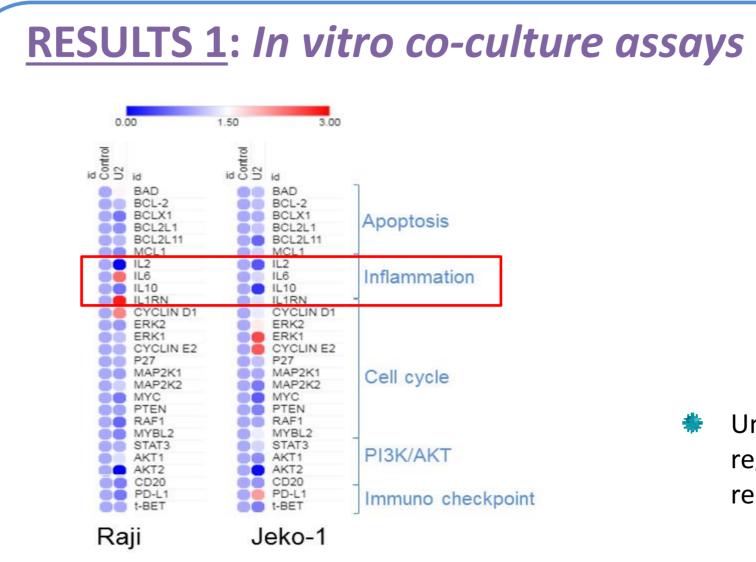
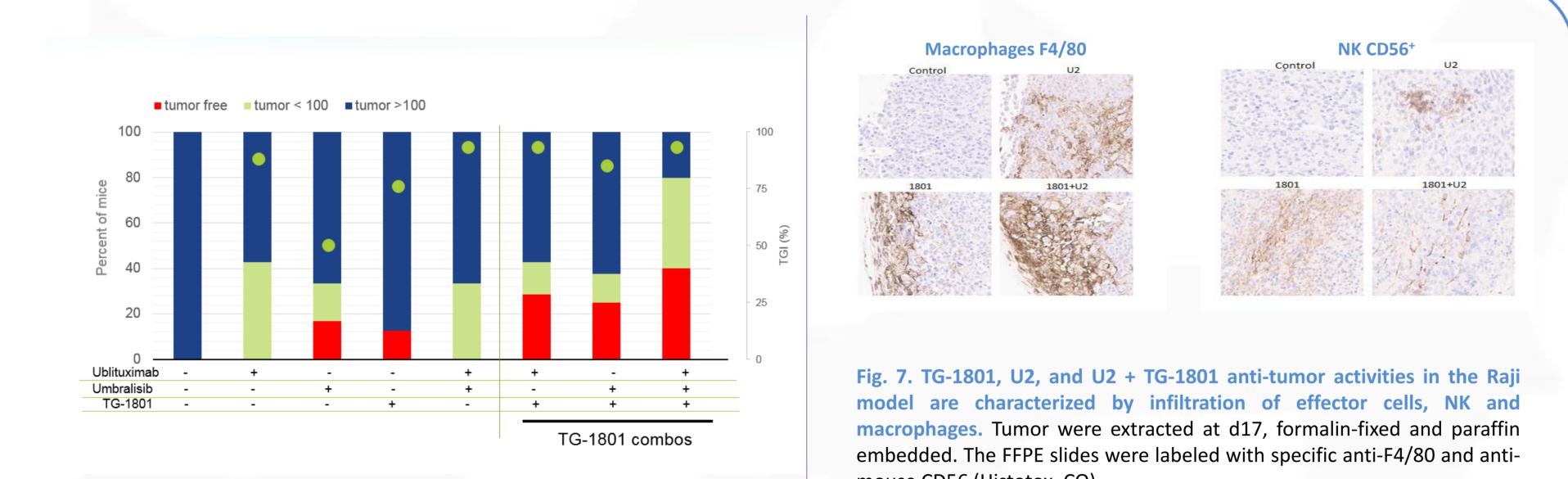
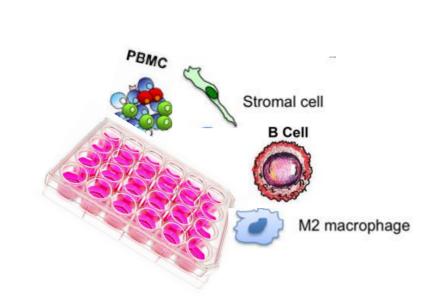



Fig. 1. Effect of U2 on B-cell signaling pathways. Raji (Burkitt lymphoma) and Jeko-1 (mantle cell lymphoma) cell lines were co-cultured with bone marrow-derived stromal cells, M2-polarized primary macrophages, and PBMCs (4:1:1:1) and treated with U2 combination (umbralisib 1µM + ublituximab 2µg/mL) for 24h. B-cells were isolated using EasySep[™] Human B Cell Enrichment Kit (StemCell Technologies) before RNA extraction. qPCR was performed using a set of B-NHL related genes. Data are presented in fold-change relative to control.

Treatment	GO	*NES	p value
Control vs U2	Oxidation-reduction process	-0.56	0.016
U2 vs 1801 + U2	Organelle envelope	-0.56	0.006
	Envelope	-0.56	0.006
	Plasma membrane part	-0.55	0.016
	Cell proliferation	-0.43	0.017
	Catalytic activity	-0.35	0.023
	Response to stress	0.32	0.032
	Cytoskeleton	-0.51	0.046
*Normalized enrichment score			

Fig. 3. Raji and Jeko-1 cells were co-cultured with bone marrow-derived stromal cells, M2-polarized primary macrophages and PBMCs (4:1:1:1) and treated with U2 combination (umbralisib $1\mu M$ + ublituximab $2\mu g/mL$), TG-1801 (10 ng/mL) or the TG-1801 + U2 combination for 24h. B-cells were isolated using EasySep[™] Human B Cell Enrichment Kit (StemCell Technologies) for RNA extraction. RNA-seq was performed at CNAG (Barcelona) and GSEA analysis at CBMSO (Madrid).



TG-1801 cooperates with ublituximab and with the ublituximab + umbralisib (U2) combination to reduce tumor growth in a subcutaneous mouse model of Burkitt lymphoma. The anti-tumor activity of ublituximab and TG-1801 was too strong to clearly delineate an additive effect at the end of treatment (d17, left figures). The treatments were then stopped and mice with no tumor or low tumor size were kept alive for another 35 days. The green dot represent the TGI%, aligned on the right side Y axis.

Thirty five days after the last dose (d42) all the mice either tumor-free (red) or bearing a small tumor (green, <100mm3) were alive. The TG-1801 combo groups showed an increased number of tumor free or low tumor burden bearing mice (red and green bars).

Grants and acknowledgements: This study was financially supported by TG Therapeutics (to GR), Fondo de Investigación Sanitaria PI18/01383, European Regional Development Fund (ERDF "Una manera de hacer Europa" (to GR), and Generalitat de Catalunya 2017SGR745 (to FB). This work was carried out under the CERCA Program (Generalitat de Catalunya).

"U2" mainly regulates the expression of inflammationrelated genes in B-NHL co-cultures

- RNA-seq analysis reveals that U2 treatment is mainly associated with a reduction of cellular respiration (redox B-NHL co-cultures, processes) in consistent with the role of PI3K in the control of malignant B cell metabolism.⁶
- The combination TG-1801+U2 leads to a down-regulation of genes associated architecture homeostasis, with cell cellular membranes, including cytoskeleton and cell proliferation.

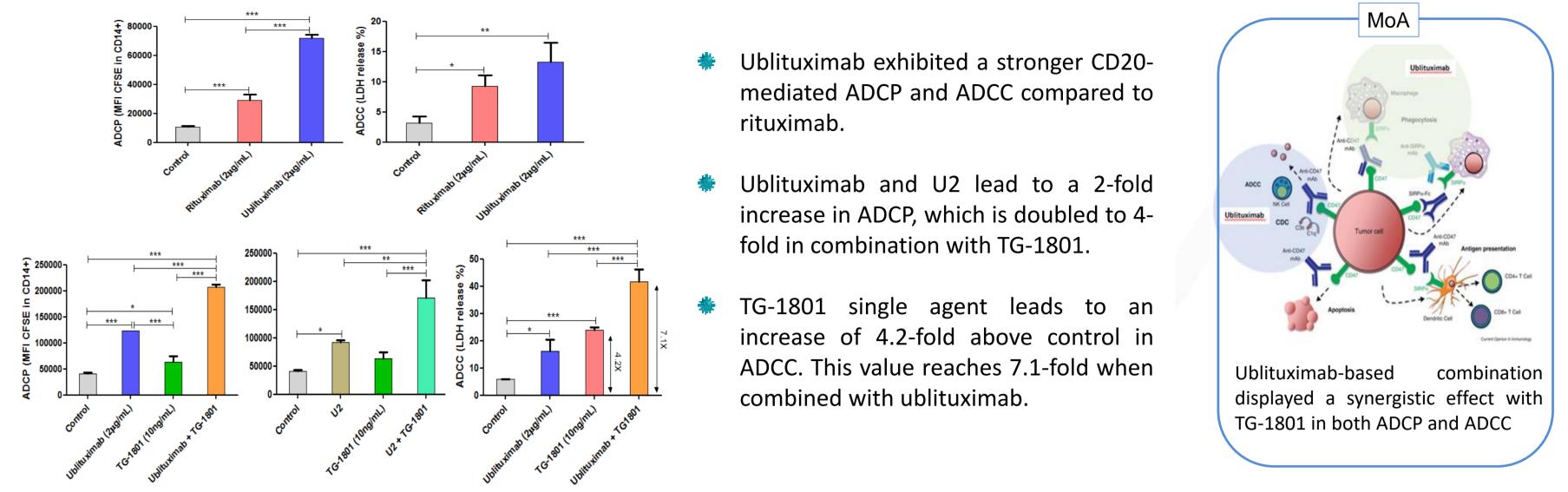
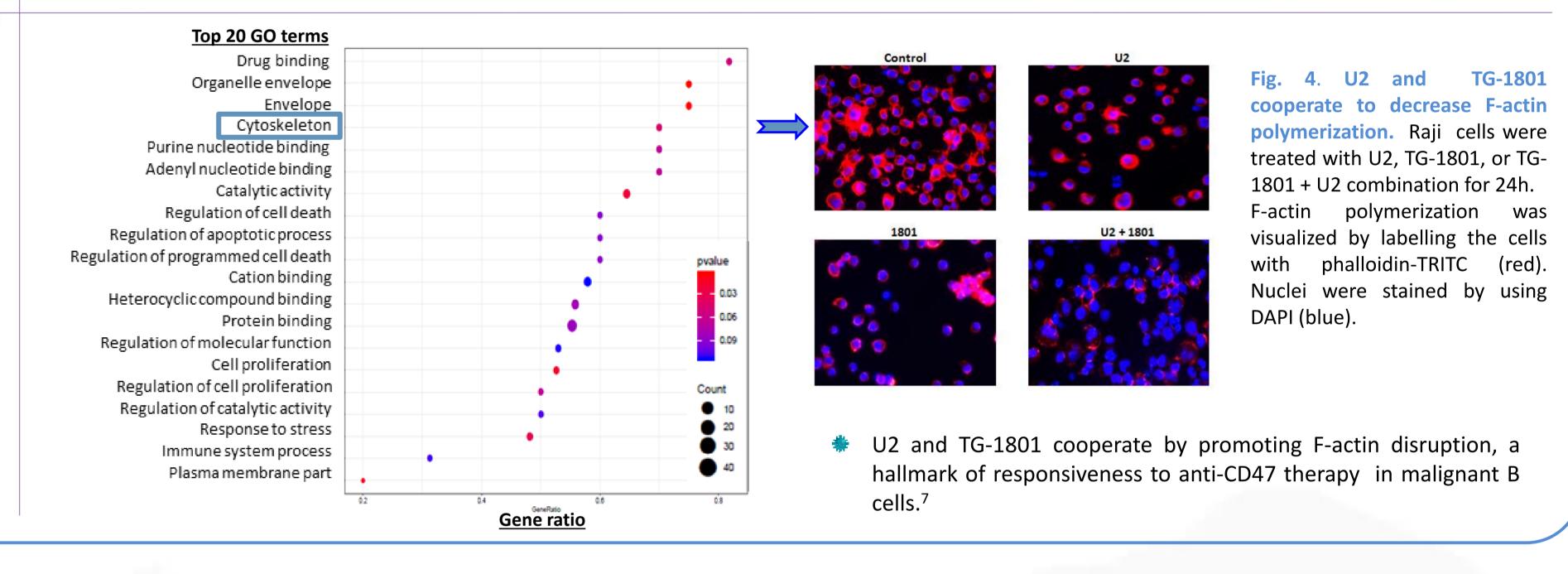



Fig. 2. Opsonizing ublituximab increases TG-1801-driven ADCC and ADCP. Antibody-dependent cell phagocytosis (ADCP) was assessed by pre-treating the CFSElabelled Raji cells with the indicated antibodies for 30 min before their incubation with M2 macrophages (ratio 1:4) for 1 hour. Shown are the percentages of B-cellscontaining macrophages (CD14+/CFSE+) as detected by flow cytometry. Antibody-dependent cellular cytotoxicity (ADCC) was assessed by pre-treating Raji cells with antibodies or isotype control for 30 min. PBMCs (E:T 10:1) were added to the target cells and co-cultured for 4 h. LDH release from target cells was quantified using Cytotoxicity Detection Kit^{PLUS} (Sigma Aldrich).

mouse CD56 (Histotox, CO)

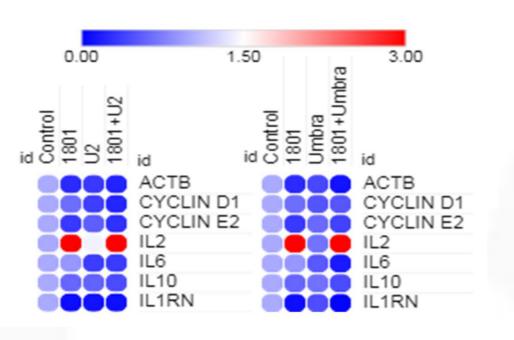


Fig. 8. Effect of TG-1801, umbralisib U2 and combinations on gene expression. Tumor were extracted at d17, and qPCR was performed. Data are presented in fold-change relative to vehicle group (control).

- **Weightsonson and U2 cooperate with TG-1801 to decrease** β actin (ACTB) expression
- Umbralisib and U2 cooperate with TG-1801 to downregulate cell cycle controlling genes
- TG-1801 treatment showed a strong pro-inflammatory effect which was enhanced by the tested combinations.

Conclusions:

- compared to rituximab

- immune effector cells.
- standard therapy.

References:

- therapy. Blood. 2011.
- 2018.
- 2017. cytoskeleton. Haematologica. 2009.

Ublituximab exerts stronger ADCP and ADCC activity in B-NHL cells when

TG-1801 increased the ADCC and ADCP activities initiated by both ublituximab and the U2 combination.

TG-1801 + U2 regulates genes related with cell architecture.

TG-1801 triggers synergistic tumor growth inhibition and results in prolonged remission when added to U2 in the *in vivo* Raji lymphoma model. This phenomenon may be mediated by increased infiltration of

* A dose-escalation Phase 1 clinical trial of TG-1801 is ongoing in histologically confirmed B-cell lymphoma relapsed or refractory to prior

Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2013. Mahadevan D, Fisher RI. Novel therapeutics for aggressive non-Hodgkin's lymphoma. J Clin Oncol. 2011.

3. Chao MP, Tang C, Pachynski RK. Et al. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody

4. Babiker HM, Glode AE, Cooke LS, Mahadevan D. Ublituximab for the treatment of CD20 positive B-cell malignancies. Expert Opin Investig Drugs.

Burris HA 3rd, Flinn IW, Patel M. et al. Umbralisib, a novel PI3Kδ and casein kinase-1ε inhibitor, in relapsed or refractory chronic lymphocytic leukaemia and lymphoma: an open-label, phase 1, dose-escalation, first-in-human study. Lancet Oncol. 2018. Vangapandu HV, Havranek O, Ayres ML, et al. B-cell Receptor Signaling Regulates Metabolism in Chronic Lymphocytic Leukemia. Mol Cancer Res.

Barbier S, Chatre L, Bras M. et al. Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin